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In this paper, we investigate relativistic spacetimes, together with their singular bound-
aries (including the strongest singularities of the Big Bang type, called malicious sin-
gularities), as noncommutative spaces. Such a space is defined by a noncommutative
algebra on the transformation groupoid0= Ē×G, whereĒ is the total space of the
frame bundle over spacetime with its singular boundary, andG is its structural group.
We show that there exists the bijective correspondence between unitary representations
of the groupoid0 and the systems of imprimitivity of the groupG. This allows us to
apply the Mackey theorem to this case, and deduce from it some information concerning
singular fibers of the groupoid0. At regular points the group representation, which is a
part of the corresponding system of imprimitivity, does not have discrete components,
whereas at the malicious singularity such a group representation can be a single repre-
sentation (in particular, an irreducible one) or a direct sum of such representations. A
subgroupK ⊂G, from which—according to the Mackey theorem—the representation
is induced to the whole ofG, can be regarded as measuring the “richness” of the singu-
larity structure. In this sense, the structure of malicious singularities is richer than those
of milder ones.
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1. INTRODUCTION

Among various kinds of singularities one meets in studying solutions to Ein-
stein field equations there are some of especially difficult character. They de-
served names such as strong curvature singularities (Rudnickiet al., 2002; Tipler,
1977a,b), crushing singularities (Eardley and Smarr, 1979), and malicious singu-
larities (Heller and Sasin, 2002). These classes do not necessarily coincide, but
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there are singularities that belong to all of them. Typical examples are the initial
and final singularities in Roberston–Walker–Friedman–Lemaˆıtre (RWFL) cosmo-
logical models and the central singularity in the Schwarzschild solution. They
are usually described as elements (ideal points) of various singular boundaries of
spacetime, but one hardly knows anything about their geometric nature besides
their defining properties, i.e., that the spacetime curvature blows up as one ap-
proaches such a singularity, that it compresses any suitabley defined volume to
zero, or that the fiber in the frame bundle over the singularity degenerates to a
single point. In the present paper, we make an attempt to say something more
about the malicious singularity by looking directly into its geometric nature.

To do so we must leave the category of smooth manifolds within which sin-
gularities can be reached only by a kind of a limiting process. In this paper, we
treat spacetime, together with its singular boundary, as a noncommutative space.
Although such a space is, in principle, nonlocal (the concepts of point and its
neighborhood are meaningless in it), it can be studied in terms of representations
of a certain noncommutative algebra in Hilbert spaces. It turns out that such an
approach can provide some information about the nature of singularities. This
method has been elaborated in the framework of our program of studying singu-
larities (Heller and Sasin, 1994, 1996, 1999, 2002). The present paper is a direct
continuation of the work of Heller and Sasin (2002); here we continue to focus
on malicious singularities and, by consequently applying to them the theory of
representations, we try to obtain a deeper insight into their geometric and physical
nature.

The geometric context of our approach is the following: First, we consider
singularities as elements of theb-boundary of spacetime (Schmidt, 1971). Al-
though serious difficulties arise when this construction is applied to spacetime
with some strong singularities, such as the ones in the closed RWFL model or in
the Schwarzschild solution (Bosshard, 1976; Johnson, 1977), they can be overcome
if the b-boundary construction is carried out in the category of structured spaces
(Heller and Sasin, 2002). Schmidt’s construction of theb-boundary of spacetime
consists in defining the Cauchy completionĒ of the total space of the frame bundle
E over spacetimeM (with the help of a Riemann metric onE), and “projecting it
down” (by the action of the Lorentz group that is a structured group of the frame
bundle) to obtain theb-completed spacetimēM =M ∪ ∂bM , where∂bM is the
b-boundary of spacetimeM . An element of∂bM is said to be amalicious singu-
larity if the fiber in Ē over it consists of a single point. Second, we construct the
transformation groupoid0= Ē×G, whereG is the structral group of the frame
bundle, and a suitable noncommutative algebraA on it. This algebra plays the
analogous role to the algebra of smooth functions on a manifold and defines a
noncommutative space that encodes “noncommutative properties” of spacetime
with singularities. It is a standard method of changing the usual space into a non-
commutative space (Connes, 1994, pp. 99–103). And finally, we use the groupoid
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representation theory (or a representation of a suitable algebra on this groupoid) to
investigate the structure of both singular and nonsingular groupoid fibers. Happily
enough, there exists the bijective correspondence between unitary representations
of the transformation groupoid0= Ē×G and the systems of imprimitivity of the
Lie groupG. This fact allows us to reduce the problem to the study of unitary
representations of the groupG in a Hilbert space (which are better known than
groupoid representations).

Our main result is that at any regular (nonsingular) point of spacetime the
unitary representation, being a part of the system of imprimitivity of the groupG,
does not contain discrete components (G has no discrete series of representations).
This is not true as far as malicious singularities are concerned. In this case, the
condition for the system of imprimitivity is satisfied trivially. In particular, the
corresponding group representation can be a single irreducible representation or a
direct sum of such representations.

Spacetimes withb-boundaries are truly malicious geometric objects. This is
demonstrated, among others, by the fact that the initial and final singularities in
the closed RWFL cosmological model form a single “point” in the corresponding
b-boundary, and are not Hausdorff separated from the rest of spacetime (Bosshard,
1976; Johnson, 1977). Our analysis does not change these conclusions, but the
geometric tools used by us are powerful enough to give us some insight into
such seemingly untractable situation. It is no longer a pathology, but rather a
mathematical structure that could be used, if necessary, to model physical reality.

The organization of our material is the following: In Section 2, we present
some elements of the groupoid structure. Our notation is basically the same as in
Heller and Sasin (2002), but to make the present paper self-consistent we repeat
some definitions and prepare necessary tools from the theory of group represen-
tations and systems of imprimitivity. In Section 3, we establish the bijective cor-
respondence between representations of the transformation groupoid0= Ē×G
and the system of imprimitivity of the groupG. Our main results, concerning both
regular points and malicious singularities, are obtained in Section 4, and are il-
lustrated in a typical example of the two-dimensional closed RWFL world model
in Section 5. Finally, in Section 6, we collect some comments and interpretative
remarks.

2. MATHEMATICAL PRELIMINARIES

2.1. Groupoids and Their Representations

We begin with a brief description of the groupoid concept (see, for instance,
Paterson, 1999, Ch. 1) mainly to fix notation.Groupoid is a set0 with a distin-
guished subset02⊂0×0, called theset of composable elements, together with
two mappings:
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· : 02→0 defined by (x, y) 7→ x · y, calledmultiplication, and
−1 : 0→0 defined byx 7→ x−1 such that (x−1)−1= x, called inversion.

Both mappings are supposed to satisfy the following conditions:

(i) if ( x, y), (y, z)∈02 then (xy, z), (x, yz)∈02 and (xy)z= x(yz),
(ii) ( y, y−1)∈02 for all y∈0, and if (x, y)∈02 then x−1(xy)= y and

(xy)y−1= x.

We also define theset of units00={xx−1: x ∈0}⊂0, and the following
mappings:

d :0→00 by d(x)= x−1x, calledsource mapping, and
r :0→00 by r (x)= xx−1, calledtarget mapping.

Let us notice that (x, y)∈02 if and only if d(x)= r (y).
For eachu∈00 we define the sets

0u = {x ∈ 0: d(x) = u} = d−1(u)

and

0u = {x ∈ 0: r (x) = u} = r−1(u).

Both these sets give different fibrations of0. The set0u
u :=0u ∩0u is closed under

multiplication and inverse. It is called theisotropy groupatu.
The above construction is purely algebraic, but it can be equipped with the

smoothness structure. In this case, it is called asmoothor Lie groupoid(Paterson,
1999, Ch. 2.3).

The so-called transformation groupoids (or action groupoids) form an impor-
tant class of Lie groupoids. LetE be a differential manifold with a groupG acting
on it to the right,E×G→ E. This action leads to the bundle (E, πM , M = E/G).
The Cartesian product0= E×G has the structure of a groupoid, and is called a
transformation groupoid. The elements of0 are pairsγ = (p, g), wherep∈ E and
g∈G. Two such pairsγ1= (p, g) andγ2= (pg, h) are composed in the following
way:

γ2γ1 = (pg, h)(p, g) = (p, gh).

The inverse of (p, g) is (pg, g−1). We could think onγ = (p, g) as an arrow
beginning atp and ending atpg. Two arrowsγ1 andγ2 can be composed if the
beginning ofγ2 coincides with the end ofγ1.

The set of units is

00 = {γ−1γ: γ ∈ 0} = {(p, e): p ∈ E}.
We shall often consider the “fibers” of this groupoid:
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0(p,e) = {(p, g): g ∈ G},
0(p,e) = {(ph−1, h): h ∈ G}.

In the following, we shall abbreviate the symbols0(p,e) and0(p,e) to 0p and0 p,
respectively. If an elementγ = (p, g)∈0 is represented as an arrow fromp to pg,
the set0p should be thought of as the set of arrows which begin in (p, e), and the
set0 p as the set of arrows which end at (p, e).

In what follows, we shall assume thatG is a unimodular group (the Haar
measure exists onG). Since all fibers of the groupoid0 are isomorphic withG,
the Haar system can be defined on0, and0 can be regarded as a locally compact
Hausdorff groupoid (Paterson, 1999, p. 32).

Let us now recall the definition of a groupoid representation. Let0 be a locally
compact groupoid,00 its space of units, and (00, {Hu}u∈00, µ) a Hilbert bundle.
Here {Hu} is a collection of Hilbert spaces withu ranging over00, andµ is a
probability measure on00. By asectionof the Hilbert bundle we mean a function
f :00→ ⋃

u∈00 Hu, where f (u)∈ Hu.

Definition 2.1. A representationU of the locally compact groupoid0 is given by
a Hilbert bundle (00, {Hu}u∈00, µ), whereµ is a quasi-invariant measure on00,
and a mapping0 3 x→ L(x)∈ B(Hd(x), Hr (x)), whered andr are the source and
the range mappings, respectively.L is supposed to satisfy the following conditions:

(i) L(u)= idHu , u∈00,
(ii) L(x)L(y)= L(x · y), almost everywhere with respect to the groupoid

measure, for allx, y∈0 that can be composed with each other (in the
case considered in the present paper this condition is satisfied every-
where),

(iii) L(x)−1= L(x−1), almost everywhere, for everyx ∈G,
(iv) for any two sectionsξ, η∈ (L2(00, {Hu}u∈00, µ) of the Hilbert bundle,

the function

x→ (L(x)ξ (d(x)), η(r (x)))

is measurable on0 (Landsman, 1998, pp. 282–285).

2.2. Induced Representations and Systems of Imprimitivity

Let G be a unimodular Lie group andK its closed subgroup (therefore,K is
also unimodular). In such a case, there exists onM = K\G (the set of right cosets)
aG-invariant measure. Let further (L , V) be a unitary representation of the group
K in a Hilbert spaceV (which can also be finitely dimensional). Now, we form
the Hilbert spaceHL = L2(M, V, dµ) of a new representation of the groupG. HL

consists of functions defined onG with values inV such that
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(i) the functiong→ ( f (g), v), for everyg∈G andv ∈V , is measurable
(with respect to the Haar measuredg on G),

(ii) f (kg)= L(k) f (g) for everyk∈ K andg∈G (covariance condition),
(iii)

∫
M ‖ f (g)‖2 d[g] < ∞, where [g]= Kg.

The spaceHL with the scalar product

( f | f ′)HL =
∫

M
( f (g), f ′(g))v d[g]

is indeed the Hilbert space.
Let us define the operator

U L (g0) f (g) = f (gg0).

Definition 2.2. The representation (U L , HL ) of the groupG is called theinduced
representationof G from the subgroupK through the representation (L, V).

This representation is unitary with respect to the above scalar product (this
follows from the invariance of the measure). Let us notice that the regular repre-
sentation4 (R, L2(G)) of the groupG is the induced representation from the trivial
subgroup{e} by (L , V), with L = 1 andV =C.

Let againG be a unimodular Lie group, (U, H ) its unitary representation in
a Hilbert spaceH , andM a G-space, i.e., a space with a (right) action ofG (the
action is not necessarily transitive). Let furtherP be a spectral measure onM , i.e.,
a measure on Borel subsets ofM with values in the space of projection operators
in the Hilbert spaceH . If B⊂M is a Borel subset thenP(B) is an orthogonal
projection inH .

Definition 2.3. A quadruple (G, U, M, P) is a system of imprimitivity(S.I. for
short) of the groupG for the representationU with the baseM if the following
conditions are satisfied:

(i) P(M)= idH ,
(ii) U (g)P(B)U (g−1)= P(Bg−1)

for everyg∈G andB⊂M , B being a Borel set.

Condition (ii) expresses a “covariance” ofP with respect toU . S.I. is said to be
transitive if G acts transitively onM . In such a case,M = K\G, whereK is a
closed subgroup ofG.

There exists another (equivalent) definition of S.I.

4 Let us recall that theleft regular representationof a unimodular Lie groupG in the Hilbert space
L2(G, dg) is given byU (g)= Lg, whereLg f (x) := f (g−1x), and theright regular representation
of G by U (g)= Rg, whereU (g) f (x)= f (xg), for everyg∈G.
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Definition 2.4. S.I. of the groupG for the representationU with the baseM is the
quadruple (G, U, M, π ), where (π, H ) is a nondegenerate representation of the
∗-algebraC0(M) of continuous functions onM vanishing at infinity in a Hilbert
spaceH . Conditions (i) and (ii) from the previous definition are now replaced by

U (g)π ( f )U (g−1) = π (Rg f ),

whereRg f (x)= f (xg), x ∈M , g∈G, f ∈C0(M). S.I. defined in this way is said
to besmoothif (π, H ) is a nondegenerate representation of the algebraC∞0 (M) of
smooth functions onM vanishing at infinity.

Theorem 2.5. (Mackey, theorem). If (G, U, M, P) is a transitive S.I.(i.e., M=
K\G) then the representation(U, H ) of the group G is induced from its subgroup
K , or more precisely there exists a unitary representation(L , UL ) of the subgroup
K ⊂G and the isomorphism of Hilbert spaces J: H→ HL such that

JU(g)J−1 = U L (g),

J P(B)J−1 = PL (B)

for every g∈G and every Borel subset B⊂M. In other words the representations
U and UL are unitary equivalent(Mackey, 1952). ¤

3. SYSTEMS OF IMPRIMITIVITY AND REPRESENTATIONS
OF THE TRANSFORMATION GROUPOID

In this section, we find the correspondence between representations of the
transformation groupoid0= E×G and systems of imprimitivity of the groupG.
It is given by the following theorem.

Theorem 3.1. Let (G, U, X, π ) be the S.I. of the group G for the representation
U with base X, and letU be a representation of the transformation groupoid
0= X×G. There exists a one-to-one correspondence

{(G, U, X, π ))↔ {U}.

Proof: The proof is a combination of Theorem 3.4.4, Corollary 3.4.6, and Corol-
lary 3.7.4 from Landsman (1998), and Theorem 3.1.1 from Paterson (1999) [see
also formula (3.20) from the book by Paterson]. ¤

We shall now directly construct the above correspondence for the differential
groupoid0= Ē×G.

Step 1. In this step we will construct another realization of S.I. for our case.
We choose a pointp0∈ E such thatτ (p0)=m, whereτ : E→M is the canonical
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projection, and construct the space

FG(Em, H ) = {ψ : Em→ H:ψ(p0g) = U (g−1)ψ(p0)
}
,

whereH is a Hilbert space of the representationU (or ofπ ). The spaceFG consists
of continuous functions.5 We equip this space with the scalar product

(ψ1|ψ2) = (ψ1(p0), ψ2(p0))H ,

changing it into a Hilbert space. We define the operatorŪ on the spaceFG

[Ū (g)ψ ]( p) = U (g)ψ(p),

and the representation ¯π of C0(E) in the spaceFG

[π̄ ( f )ψ ]( p0g) = π (Rg−1 f )ψ(p0g)

for everyψ ∈FG(Em, H ), f ∈C0(E), and for a pointp0 such thatτ (p0)=m; that
is to say

[π̄ ( f )ψ ]( p0) = π ( f )ψ(p0).

This condition enforces (G, Ū , E, π̄ ) to be an S.I.

Proposition 3.2. (G, Ū , E, π̄ ) is an S.I. of the group G for the representation̄U
with base E.

Proof: By using the covariance of the S.I. (G, U, E, π ) and the properties of
functions formFG we check the condition

ψ ∈ FG ⇒ π̄ ( f ) ∈ FG

and the convariance condition for (G, Ū , E, π̄ ). ¤

Step 2. First, we construct a Hilbert space which will from the Hilbert bundle.
Let p0∈ E, andp1= p0g0. Then

Hp0 = {F :0 p0→ H: F
(
p0g−1, g

) = U (g)F(p0, e)
}
.

Of course, functionsF are continuous, and we have the Hilbert bundle (E,Hp, dµ),
wheredµ is the measure onE.

Now, we define the representation operator of the groupoid0= E×G

U(p0, g0) :Hp0→Hp1

5 Strong continuity is assumed as a part of the definition of the unitary representation of a Lie group;
i.e., it is assumed that, for everyh∈ H , the functionG∈ g→U (g)h∈ H is continuous.



P1: GDX

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465830 June 10, 2003 14:5 Style file version May 30th, 2002

Structure of Malicious Singularities 435

by

[U(p0, g0)F ] = F(γ−1η) = F
(
p1g−1, gg−1

0

)
.

Hereγ = (p0, g0), η= (p1g−1, g).
Unitarity of the operatorU(p0, g0) is implied by the definitions of the scalar

products inH p0 andH p1:

(F1, F2)Hp0 = (F1(p0, e), F2(p0, e))H ,

(F̄1, F̄2)Hp1 = (F̄1(p1, e), F̄2(p1, e))H .

We can easily check that all conditions of the groupoid representation are satisfied
(in this case, “almost everywhere” is replaced by “everywhere”).

Step 3. Now, we should check that the constructed groupoid representation cor-
responds to the initial S.I. To this end, let us define the isomorphism of Hilbert
spaces

Jp0 :Hp0 → FG(Em, H ),

wherem= τ (p0), by

ψ
(
p0g−1

) = F
(
p0g−1, g

)
,

whereJp0 F =ψ .

Theorem 3.3. The isomorphisms Jp “transform operatorsU(p0, g0) onto oper-
atorsŪ (g−1

0 )” in the sense thatU(p0, g0)= J−1
p1
◦ Ū (g−1) ◦ Jp0. In other words,

the following diagram commutes:

Proof: The proof is by direct computation. ¤

4. SYSTEMS OF IMPRIMITIVITY FOR SINGULAR SPACETIMES

Let us notice that the groupoid0 is the disjoint sum of0m= Em×G, i.e.,
0= ⋃m∈M 0m. And if the malicious singularity is present atm1, 0̄= ⋃m∈M 0m ∪
0m1, where0m1 ={(0, 0,. . . , 0)}×G.
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Definition 4.1. Let m0∈ M̄ , andM̄ =M ∪ {m1}. Thelocal S.I. at the pointm0 of
the groupG= SO(3, 1) for the representation (U, H ) of G is (G, U, Ēm0, π ). Let
us notice that the base of this S.I. isEm0.

Proposition 4.2. Let m∈M be a regular point. The S.I.(G, U, E, π ) determines
the local S.I. at the point m:(G, U, Em, π1).

Proof: Let us consider the algebraC0(Em) of continuous functions onEm van-
ishing at infinity. We choose a pointp0∈ Em, and want to show thatf ∈C0(Em)
can be “extended” tõf ∈C0(E).

Let {(On, fn)}n∈N be the approximate unit for the algebraC0(M); On is here
a sequence of sets such that the closureŌn of each of them is compact, and
supp fn⊂On. We also assume that everyOn is the domain of trivialization of the
bundleE→M . Let further

f̃ n(m, g) = fn(m) · f (p0g).

Of course, f̃ n ∈C0(E). Finally, we define the representationπ1 of the algebra
C0(Em) in the spaceH :

π1( f ) = lim
n→∞π ( f̃ n)

where the limit is understood in the sense of strong topology on the Hilbert space
H . ¤

Theorem 4.3. Let (G, Ū , Em, π̄ ) be a local S.I. at a regular point m∈M. Then
the representation(Ū , FG(Em, H )), and consequently the representation(U, H ),
is unitary equivalent to the factor representation of the regular representation of
the group G in the Hilbert space L2(G).

Proof: Let us notice thatEm= K\G, whereK ={e}. Therefore, the considered
S.I. is transitive. On the strength of the Mackey theorem, the representation (U, H )
is equivalent to the induced representation from the subgroupK ={e}. The induc-
ing representation is given by the operatorL = idv. (If the subgroup is trivial,
the only representation operator is the multiplication by 1, but the representation
spaceV can ben-dimensional.) Consequently, the representation induced byL
is given by the factor representation containing the regular representation in the
spaceL2(G), with the multiplicity equal to dim(V). ¤

Corollary 4.4. The representation(U, H ), being a part of the local S.I., does
not contain discrete irreducible components.



P1: GDX

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465830 June 10, 2003 14:5 Style file version May 30th, 2002

Structure of Malicious Singularities 437

Proof: The regular representation of the groupG= SO(3, 1) has no discrete
series. ¤

Let us notice, however, that this result depends on the dimension of space.
The groupSO(n, 1) has no discrete series forn= 2k+ 1, but it has the discrete
series forn= 2k.

Let us now consider the situation in the maliciously singular fiber; such a
fiber is0m1 ={pt}×G, whereτ (pt)=m1∈ M̄\M . In fact,0m1 can be regarded
as a well-defined groupoid (indeed, (pt, g1) ◦ (pt, g2)= (pt, g2g1)), and we can
consider the spaceHpt. If F ∈Hpt then

F(pt, g) = U (g)F(pt, e).

We see that the operatorU (g) acts according to the rule, but in the trivial way.
The same is true for the operator of the groupoid representation

[U(pt, g0)F ]( pt, g) = F
(
pt, gg−1

0

) = U
(
g−1

0

)
F(pt, g).

Let now (G, U, Em1, π ) be the local S.I. at the pointpt. We haveC0(Em1)'R,
and the condition of imprimitivity

U (g)π ( f )U (g−1) = π ( f ), f = const, π ( f ) = a idH

is satisfied trivially.
This means that if (G, U, Em1, π ) is the local S.I. at the maliciously singu-

lar point pt, then the condition for S.I. does not impose any limitations on the
representation (U, H ). In particular, it can be an irreducible representation.¤

5. EXAMPLE: TWO-DIMENSIONAL RWFL WORLD MODEL

In this section, we consider a simplified (two-dimensional) RWFL cosmo-
logical model with its two malicious singularities that often serves as a typical
example in the classical singularity problem (Bosshard, 1976; Dodson, 1978).

Let us consider the spacetime

M = {(η, χ ): η ∈ (0, T), χ ∈ S1},
where (O, T)⊂R, carrying the metric

ds2 = R2(η)(−dη2+ dχ2).

This model has the initial singularity:R2(η)→ 0 asη→ 0, and the final singularity:
R2(η)→ 0 asη→ T (for the detailed presentation of this model see Dodson, 1978,
or Heller and Sasin, 2002).
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To make a contact with our previous construction, let us list all relevant
magnitudes:

M = (0, T)× S1, (η, χ , λ) ∈ E, t ∈ R,

γ = (η, χ , λ, t) ∈ 0, d(γ ) = (η, χ , λ),

r (γ ) = (η, χ , λ+ t), 0P = {(pt−1, t): t ∈ R} = {(η, χ , λ− t, t}.
To obtain the groupoid representation corresponding to a given representation
(U, H ) of the groupG'R, we construct the Hilbert space for a chosen regular
point p0= (η, χ , t0):

H = {F :0 p0 → H : F
(
p0g−1, g

) = U (g)F(p0, e)
}

= {F(η, χ , λ0− t, t) = U (t)F(η, χ , λ0, 0)}.
And for the groupoid representation operator we have

U(p0, g0)F := U(η, χ , λ0, t0)F(η, χ , λ0+ t0− t, t)

= F(η, χ , λ0+ t0− t, t − t0) = U (−t0)F(η, χ , λ0− t, t).

To obtain the corresponding S.I. (G, U, E(η,χ ), P), for G=R, we make use
of the generalized Stone, Neimark, Ambrose, Godement theorem (see Barut and
Ra↪czka, 1977, p. 160), which says that a representation (U, H ) of the groupR in
any Hilbert space can be expressed with the help of a spectral measureP, in the
following way:

U (t) =
∫

R
eits d P(s).

We have

FG(Em, H ) = {ψ : Em→ H :ψ(η, χ , λ0+ t) = U (t)ψ(η, χ , λ0)}.
In this Hilbert space the spectral measure is

P(B)ψ(η, χ , t) = χB(t)ψ(η, χ , t),

whereB⊂R is a Borel set, andχB its characteristic function.
It can be easily seen that the system (G, U, Em, P) indeed satisfies conditions

of S.I. Therefore, the results obtained in the previous sections remain valid. For
regular points, the representation (U, H ) is equivalent to the regular representation
of the groupR in L2(R), possibly with the multiplicity greater than 1. For malicious
singularities, every representation (U, H ) of the groupR satisfied the conditions
of S.I. The regular representation ofR in L2(R) has, exactly as forSO(3, 1), no
discrete components.
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6. INTERPRETATION AND COMMENTS

So far our results were purely formal; let us now try to read from them a
physical meaning. In physical applications systems of imprimitivity appear in the
following circumstances.

Let us consider a quantum physical system having the symmetry groupP.
It is described by a pair (U (P), H ), whereU (P) is a unitary representation of
the groupP in a Hilbert spaceH . Let us further assume that a classical system
is described by the pair (P, M), whereM is the space of a classical observable
that characterizes the state of this system (e.g. the space of positions or space of
momenta), andP is acting onM as its symmetry group. If inH there is a state
ψx in which the value of an observable isx ∈M , we say that the quantum stateψx

corresponds to the classical magnitudex. Let us denote

Hx = {ψα ∈ H : a = x}.
If such correspondence exists, i.e., if the quantum system has an interpretation in
terms of classical observables, the following conditions hold:

(i) Hx =
⋃

x∈M Hx,
(ii) U (p)Hx ⊂ Hpx,

and there exists the system of imprimitivity for the representationU (p) of the
symmetry groupP (Mensky, 1976). The above is visualized in the following
diagram, the left column of which represents quantum description and its right
column the corresponding classical description.

If P acts onM transitively, i.e., if there is a subgroupK ⊂ P such that
M = K\P, then, on the strength of the Mackey theorem, any imprimitive repre-
sentation of the groupP is induced from the subgroupK (Mackey, 1978, 1998).

Let us now apply this analysis to the case of spacetime with malicious sin-
gularities. The groupoid representation is given by the pair (U , {Hu}u∈E). Al-
though in the present work we consider classical singularities, we can say that
the above pair provides a quantum description of the singularity (or something
analogous to quantum description since it uses typically quantum mathematical
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tools). We also have its classical description given by the action of the group
G= SO(3, 1) on E, E×G→ E (Lorentz rotations of local frames). Since the
groupoid representationU corresponds bijectively to the system of imprimitivity
(G, U, E, π ), we could say that the quantum description of our model corresponds
to its classical description. This some-how justifies the fact that although we are
facing the classical singularity problem, it can be dealt with in terms of mathe-
matical structures typical for quantum theory (unitary operators, Hilbert spaces,
etc.).

In our case, the Mackey theorem says that the unitary representation of the
Lorentz groupG= SO(3, 1), which is the part of the corresponding S.I., is in-
duced from its subgroupK such thatEm= K\G. If m∈M is a regular point then
K ={e}; if m∈ M̄\M is a malicious singularity thenK =G. This means that in our
model the correspondence between quantum description and classical description
is complete if we do not take into account malicious singularities. At maliciously
singular points this correspondence formally also takes place, but the S.I. condition
is always trivially satisfied.

There can exist “intermediate” singularities for which the isotropy groupK is
a proper subgroup ofG; they are not regular points of spacetime, but as singularities
are weaker than malicious ones (e.g., see Ellis and Schmidt, 1977). LetK p be the
isotropy group of a pointp∈ E. We haveK p= Kq if there is g∈G such that
q= pg, andEm= K p\G. SinceEm, for an “intermediate” singularity atm, is a
quotient space, the Mackey theorem applies, and consequently the represenation,
that is a part of the S.I. with the baseEm, is an induced representation by a certain
representation of the subgroupK .

Let us notice that ifm is a regular point of spacetime, dimEm= dimG; if m
is an “intermediate” singularity, dimEm= dimG− dim K ; if m is a malicious sin-
gularity, dimEm= 0. In this sense,K may be regarded as measuring the “strength”
of a given singularity.

At regular points the group representation, which is an element of S.I., does
not have discrete components [the groupSO(3, 1) has no discrete series]. In
the quantum field theory this implies the impossibility to localize an elemen-
tary particle. At the malicious singularity such a group representation can be a
single irreducible representation or a direct sum of such representations. For-
mally speaking, this would mean that at the singularity elementary particles can
be localized. Since, however, this follows from the fact that the S.I. condition
does not impose any limitations on what can happen here, the correct interpre-
tation seems to be that general relativity is essentially an incomplete theory:
malicious singularities are its “open windows” that claim for a more general
(and more complete) theory. This is not true, however, that we know nothing
about the nature of the malicious singularity; as we have shown, some of its
characteristics surrender to the analysis in terms of representations in Hilbert
spaces.
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