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In this paper, we investigate relativistic spacetimes, together with their singular bound-
aries (including the strongest singularities of the Big Bang type, called malicious sin-
gularities), as noncommutative spaces. Such a space is defined by a noncommutative
algebra on the transformation groupdid= E x G, whereE is the total space of the
frame bundle over spacetime with its singular boundary,@nslits structural group.

We show that there exists the bijective correspondence between unitary representations
of the groupoidl” and the systems of imprimitivity of the group. This allows us to

apply the Mackey theorem to this case, and deduce from it some information concerning
singular fibers of the groupoid. At regular points the group representation, which is a
part of the corresponding system of imprimitivity, does not have discrete components,
whereas at the malicious singularity such a group representation can be a single repre-
sentation (in particular, an irreducible one) or a direct sum of such representations. A
subgroupK c G, from which—according to the Mackey theorem—the representation

is induced to the whole d&, can be regarded as measuring the “richness” of the singu-
larity structure. In this sense, the structure of malicious singularities is richer than those
of milder ones.
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1. INTRODUCTION

Among various kinds of singularities one meets in studying solutions to Ein-
stein field equations there are some of especially difficult character. They de-
served names such as strong curvature singularities (Rudhtiakj 2002; Tipler,
1977a,b), crushing singularities (Eardley and Smarr, 1979), and malicious singu-
larities (Heller and Sasin, 2002). These classes do not necessarily coincide, but
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there are singularities that belong to all of them. Typical examples are the initial
and final singularities in Roberston—Walker—Friedman-Li&éméRWFL) cosmo-
logical models and the central singularity in the Schwarzschild solution. They
are usually described as elements (ideal points) of various singular boundaries of
spacetime, but one hardly knows anything about their geometric nature besides
their defining properties, i.e., that the spacetime curvature blows up as one ap-
proaches such a singularity, that it compresses any suitabley defined volume to
zero, or that the fiber in the frame bundle over the singularity degenerates to a
single point. In the present paper, we make an attempt to say something more
about the malicious singularity by looking directly into its geometric nature.

To do so we must leave the category of smooth manifolds within which sin-
gularities can be reached only by a kind of a limiting process. In this paper, we
treat spacetime, together with its singular boundary, as a noncommutative space.
Although such a space is, in principle, nonlocal (the concepts of point and its
neighborhood are meaningless in it), it can be studied in terms of representations
of a certain noncommutative algebra in Hilbert spaces. It turns out that such an
approach can provide some information about the nature of singularities. This
method has been elaborated in the framework of our program of studying singu-
larities (Heller and Sasin, 1994, 1996, 1999, 2002). The present paper is a direct
continuation of the work of Heller and Sasin (2002); here we continue to focus
on malicious singularities and, by consequently applying to them the theory of
representations, we try to obtain a deeper insight into their geometric and physical
nature.

The geometric context of our approach is the following: First, we consider
singularities as elements of theboundary of spacetime (Schmidt, 1971). Al-
though serious difficulties arise when this construction is applied to spacetime
with some strong singularities, such as the ones in the closed RWFL model or in
the Schwarzschild solution (Bosshard, 1976; Johnson, 1977), they can be overcome
if the b-boundary construction is carried out in the category of structured spaces
(Heller and Sasin, 2002). Schmidt’s construction of tHeoundary of spacetime
consists in defining the Cauchy completiemof the total space of the frame bundle
E over spacetim@ (with the help of a Riemann metric df), and “projecting it
down” (by the action of the Lorentz group that is a structured group of the frame
bundle) to obtain thé-completed spacetim® = M U 9,M, whered,M is the
b-boundary of spacetimkl. An element oo, M is said to be analicious singu-
larity if the fiber in E over it consists of a single point. Second, we construct the
transformation groupoidl = E x G, whereG is the structral group of the frame
bundle, and a suitable noncommutative algedran it. This algebra plays the
analogous role to the algebra of smooth functions on a manifold and defines a
noncommutative space that encodes “noncommutative properties” of spacetime
with singularities. It is a standard method of changing the usual space into a non-
commutative space (Connes, 1994, pp. 99-103). And finally, we use the groupoid
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representation theory (or a representation of a suitable algebra on this groupoid) to
investigate the structure of both singular and nonsingular groupoid fibers. Happily
enough, there exists the bijective correspondence between unitary representations
of the transformation groupoid = E x G and the systems of imprimitivity of the

Lie group G. This fact allows us to reduce the problem to the study of unitary
representations of the group in a Hilbert space (which are better known than
groupoid representations).

Our main result is that at any regular (nonsingular) point of spacetime the
unitary representation, being a part of the system of imprimitivity of the gtaup
does not contain discrete componer@di@as no discrete series of representations).
This is not true as far as malicious singularities are concerned. In this case, the
condition for the system of imprimitivity is satisfied trivially. In particular, the
corresponding group representation can be a single irreducible representation or a
direct sum of such representations.

Spacetimes with-boundaries are truly malicious geometric objects. This is
demonstrated, among others, by the fact that the initial and final singularities in
the closed RWFL cosmological model form a single “point” in the corresponding
b-boundary, and are not Hausdorff separated from the rest of spacetime (Bosshard,
1976; Johnson, 1977). Our analysis does not change these conclusions, but the
geometric tools used by us are powerful enough to give us some insight into
such seemingly untractable situation. It is no longer a pathology, but rather a
mathematical structure that could be used, if necessary, to model physical reality.

The organization of our material is the following: In Section 2, we present
some elements of the groupoid structure. Our notation is basically the same as in
Heller and Sasin (2002), but to make the present paper self-consistent we repeat
some definitions and prepare necessary tools from the theory of group represen-
tations and systems of imprimitivity. In Section 3, we establish the bijective cor-
respondence between representations of the transformation grdupoktix G
and the system of imprimitivity of the grou. Our main results, concerning both
regular points and malicious singularities, are obtained in Section 4, and are il-
lustrated in a typical example of the two-dimensional closed RWFL world model
in Section 5. Finally, in Section 6, we collect some comments and interpretative
remarks.

2. MATHEMATICAL PRELIMINARIES
2.1. Groupoids and Their Representations

We begin with a brief description of the groupoid concept (see, for instance,
Paterson, 1999, Ch. 1) mainly to fix notatigaroupoidis a setl” with a distin-
guished subsdt? c ' x T", called theset of composable elementsgether with
two mappings:
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-: T2 T defined by X, y) — x - y, calledmultiplication, and
~1:T — I defined byx — x~* such that x~1)~1 = x, called inversion.

Both mappings are supposed to satisfy the following conditions:

(i) if (x,Y), (Y, 2) eT?then Ky, 2), (X, y2) e '? and &ky)z=x(y2),
(i) (y,yHer?for all yerl, and if (x,y)eI'? then x"}(xy)=y and

(xy)y t=x.

We also define theet of unitsT'®={xx% xeT'} cT, and the following
mappings:

d:T — I'° by d(x) = x~*x, calledsource mappingand
r:I' — 'Y byr(x)=xx"1, calledtarget mapping

Let us notice thatx, y) € I'? if and only if d(x) =r (y).
For eachu € I'° we define the sets

My ={xeldXx) =u} =d*u)
and
MY ={x el:rx)=u}=r"1).

Both these sets give different fibrationdufThe sel" :=T'" N T is closed under
multiplication and inverse. It is called thgotropy groupat u.

The above construction is purely algebraic, but it can be equipped with the
smoothness structure. In this case, it is callsdaothor Lie groupoid(Paterson,
1999, Ch. 2.3).

The so-called transformation groupoids (or action groupoids) form an impor-
tant class of Lie groupoids. L& be a differential manifold with a group acting
onittotherightE x G — E. This action leads to the bundlE (7, M = E/G).

The Cartesian produdt= E x G has the structure of a groupoid, and is called a
transformation groupoidThe elements df are pairy’ = (p, g), wherep € E and

g € G. Two such pairg, = (p, g) andy, = (pg, h) are composed in the following
way:

y2v1 = (pg h)(p, 9) = (p, gh).

The inverse of p, g) is (pg, g~1). We could think ony = (p, g) as an arrow
beginning atp and ending apg. Two arrowsy; andy, can be composed if the
beginning ofy, coincides with the end of;.

The set of units is

r’={yYy:yel}={(p,e):peE.

We shall often consider the “fibers” of this groupoid:
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e =1{(p.9):9 € G},
r®® — ((ph~%, h):h € G}.

In the following, we shall abbreviate the symbalg, ey andT'(*® to I, andI'P,
respectively. If an elememt=(p, g) € I is represented as an arrow frgnto pg,
the setl”, should be thought of as the set of arrows which begirpire], and the
setI'P as the set of arrows which end at, €).

In what follows, we shall assume th@t is a unimodular group (the Haar
measure exists 08). Since all fibers of the groupoid are isomorphic withG,
the Haar system can be definedIorandI” can be regarded as a locally compact
Hausdorff groupoid (Paterson, 1999, p. 32).

Let us now recall the definition of a groupoid representationI' e a locally
compact groupoidl™® its space of units, and™@, {Hy}ucro, 1) a Hilbert bundle.
Here {H,} is a collection of Hilbert spaces with ranging overl™®, and . is a
probability measure oR®. By asectionof the Hilbert bundle we mean a function
f:T%— Uyero Hu, Wheref (u) € Hy.

Definition 2.1. A representatior{ of the locally compact groupoid is given by

a Hilbert bundle [°, {Hy}uero, 1), Wherep is a quasi-invariant measure oH,
and a mappin@’ > X — L(x) € B(Ha(x), Hr(x), whered andr are the source and
the range mappings, respectivalyis supposed to satisfy the following conditions:

(i) L(u)=idn,,uer?",

(i) L(x)L(y)=L(x-y), almost everywhere with respect to the groupoid
measure, for alk, y € " that can be composed with each other (in the
case considered in the present paper this condition is satisfied every-
where),

(i) L(x)"t=L(x"Y), almost everywhere, for evere G,

(iv) for any two sectiong, n € (L2(I"°, {Hy}uero, 1) of the Hilbert bundle,
the function

X — (L(x)&(d(x)), n(r (x)))
is measurable ofi (Landsman, 1998, pp. 282-285).

2.2. Induced Representations and Systems of Imprimitivity

Let G be a unimodular Lie group ard its closed subgroup (therefong, is
also unimodular). In such a case, there existMor K\ G (the set of right cosets)
aG-invariant measure. Let furthek (V) be a unitary representation of the group
K in a Hilbert space/ (which can also be finitely dimensional). Now, we form
the Hilbert spacéd, = L?(M, V, du) of a new representation of the groGp H.
consists of functions defined @ with values inV such that
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(i) the functiong— (f(g), v), for everyge G andv eV, is measurable
(with respect to the Haar measutg on G),
(i) f(kg)=L(k)f(g)for everyk € K andg e G (covariance condition),
(iiiy [y I T(9)II7d[g] < oo, where p] = Kg.

The spaceH| with the scalar product

(F1 ) = /M<f(g). #(g))y dlg]

is indeed the Hilbert space.
Let us define the operator

U'(g0) f(9) = f(gw).

Definition 2.2. The representatiot)(-, H, ) of the groupG is called thénduced
representatiorof G from the subgrougK through the representatioh (V).

This representation is unitary with respect to the above scalar product (this
follows from the invariance of the measure). Let us notice that the regular repre-
sentatiod(R, L%(G)) of the groupG is the induced representation from the trivial
subgroup{e} by (L, V), with L =1 andV =C.

Let againG be a unimodular Lie groupl), H) its unitary representation in
a Hilbert spaceH, andM a G-space, i.e., a space with a (right) action®f{the
action is not necessarily transitive). Let furthiebe a spectral measure dh, i.e.,

a measure on Borel subsetsifwith values in the space of projection operators
in the Hilbert spaceH. If B C M is a Borel subset the®(B) is an orthogonal
projection inH.

Definition 2.3. A quadruple G, U, M, P) is asystem of imprimitivityS.l. for
short) of the groups for the representatiob with the baseM if the following
conditions are satisfied:

(i) P(M)=idy,
(i) U(g)P(B)U(g 1) =P(Bg ™)

for everyge G andB c M, B being a Borel set.

Condition (ii) expresses a “covariance” Bfwith respect tdJ. S.I. is said to be
transitiveif G acts transitively orM. In such a caseM = K\G, whereK is a
closed subgroup db.

There exists another (equivalent) definition of S.1.

4Let us recall that théeft regular representatiomf a unimodular Lie grou in the Hilbert space
L2(G, dg) is given byU(g) = Lg, whereLg f (x) := f(g~!x), and theright regular representation
of G by U(g) = Ry, whereU (g) f (x) = f(xg), for everyg € G.
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Definition 2.4. S.I. of the groups for the representatidd with the baseM is the
quadruple G, U, M, x), where {, H) is a nondegenerate representation of the
x-algebraCy(M) of continuous functions oM vanishing at infinity in a Hilbert
spaceH . Conditions (i) and (ii) from the previous definition are now replaced by

U@ (Hu(g™) = n(Rgf),

whereRy f(x) = f(xg), xe M, ge G, f € Co(M). S.I. defined in this way is said
to besmoothif (7, H) is a nondegenerate representation of the algéptéM) of
smooth functions oM vanishing at infinity.

Theorem 2.5. (Mackey, theoremIf (G, U, M, P) is a transitive S.I(i.e., M=
K\G) then the representatiafy, H) of the group G is induced from its subgroup
K, or more precisely there exists a unitary representationU, ) of the subgroup
K ¢ G and the isomorphism of Hilbert spacesd — H_ such that

JU(9)d~" = U (0.
JP(B)J* = P-(B)

for every ge G and every Borel subset® M. In other words the representations
U and U* are unitary equivalenfMackey, 195p O

3. SYSTEMS OF IMPRIMITIVITY AND REPRESENTATIONS
OF THE TRANSFORMATION GROUPOID

In this section, we find the correspondence between representations of the
transformation groupoifl = E x G and systems of imprimitivity of the grou@.
It is given by the following theorem.

Theorem 3.1. Let(G, U, X, ) be the S.I. of the group G for the representation
U with base X, and let/ be a representation of the transformation groupoid
I' = X x G. There exists a one-to-one correspondence

{(G, U, X, 7)) < {U}.
Proof: The proofis acombination of Theorem 3.4.4, Corollary 3.4.6, and Corol-

lary 3.7.4 from Landsman (1998), and Theorem 3.1.1 from Paterson (1999) [see
also formula (3.20) from the book by Paterson]. O

We shall now directly construct the above correspondence for the differential
groupoidl' = E x G.

Step 1. In this step we will construct another realization of S.I. for our case.
We choose a poinpg € E such thatr(pg) = m, wherer : E — M is the canonical
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projection, and construct the space

Fo(Em, H) = {¢ 1 Em = H:¢(pog) = U(g ¥ (po)}.

whereH is a Hilbert space of the representatidifor of 7). The spacé g consists
of continuous function.We equip this space with the scalar product

(V1l¥r2) = (Y1(po), ¥2(Po))H,
changing it into a Hilbert space. We define the oper&mm the spacég

[U(@v1(p) = U(@)¥(p),
and the representationof Cy(E) in the spaceFg
[7 (f)¥1(pog) = 7 (Rg- f)¥(pog)

foreveryyr € F6(Em, H), f € Co(E), and for a pointpg such that (pg) = m; that
is to say

[ (£)¥1(po) = 7 (f)¥ (po).
This condition enforcesg, U, E, w)tobeanS.l.

Proposition 3.2. (G, U, E, ) is an S.I. of the group G for the representatlan
with base E

Proof: By using the covariance of the S.IG(U, E, =) and the properties of
functions formFg we check the condition
I//Efe=>7?(f)6.7:(3
and the convariance condition faB(U, E, 7). O
Step 2. First, we construct a Hilbert space which will from the Hilbert bundle.
Let po € E, andpy = pogo. Then
HP = {F:TP— H:F(pog™, g) = U(Q)F(po, €)}.

Of course, function§ are continuous, and we have the Hilbert bun&@geX(P, du),
wheredu is the measure o&.

Now, we define the representation operator of the groupeidE x G

U(po, o) : HP —H™

5Strong continuity is assumed as a part of the definition of the unitary representation of a Lie group;
i.e., itis assumed that, for evelye H, the functionG € g — U(g)h € H is continuous.
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by
[U(Po, B)F] = F(y 'n) = F(mo ™ 0% ).

Herey = (po, Q). n= (P9, 9)-
Unitarity of the operato#/(po, go) is implied by the definitions of the scalar
products inHP andH P:;

(F1, F2)2e0 = (F1(pos €), F2(Po, €))H,
(F1, F2)um = (F1(p1, ©), Fa(p1, @)1

We can easily check that all conditions of the groupoid representation are satisfied
(in this case, “almost everywhere” is replaced by “everywhere”).

Step 3. Now, we should check that the constructed groupoid representation cor-
responds to the initial S.I. To this end, let us define the isomorphism of Hilbert
spaces

wherem = t(pg), by
¥(Pog™") = F(pog ™, 9),
whereJp F = .
Theorem 3.3. The isomorphismspJtransform operatord{(po, go) Onto oper-

atorsU (gy%)” in the sense that/(po, go) = It U(g™1) o Jp,. In other words,
the following diagram commutes:

Tr ,
HPo Fo(Em, 1)
U(po, 90) Ulgs")
HPI fG(Em, H)
jp]
Proof: The proofis by direct computation. O

4. SYSTEMS OF IMPRIMITIVITY FOR SINGULAR SPACETIMES

Let us notice that the groupoid is the disjoint sum of', = Ey x G, i.e.,
I' = Umem I'm- And if the malicious singularity is presentrat, I' = (. I'm U
Ty, wherel',, ={(0, 0,..., 0)} x G.
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Definition 4.1. Letmge M, andM = M U {my}. Thelocal S.I. at the pointng of
the groupG = SO(3, 1) for the representatiol( H) of G is (G, U, En,, 7). Let
us notice that the base of this S.| g,

Proposition4.2. Letme M be aregular point. The S{G, U, E, ) determines
the local S.I. at the point m(G, U, Ep, 71).

Proof: Let us consider the algeb@y(E,) of continuous functions of, van-
ishing at infinity. We choose a poifh € En, and want to show that € Co(En)
can be “extended” td € Co(E).

Let {(On, fn)}nen be the approximate unit for the algetZa(M); O, is here
a sequence of sets such that the closOireof each of them is compact, and
supp fn € On. We also assume that evety, is the domain of trivialization of the
bundleE — M. Let further

fa(m, g) = fa(m) - f(pog).

Of course, f,, € Co(E). Finally, we define the representatien of the algebra
Co(Em) in the spaceH:

my(f) = lim 7(fp)

where the limit is understood in the sense of strong topology on the Hilbert space
H. a

Theorem 4.3. Let(G, U, En, ) be alocal S.I. at a regular point m M. Then

the representatiofU, Fs(Em, H)), and consequently the representatith H),

is unitary equivalent to the factor representation of the regular representation of
the group G in the Hilbert space’(G).

Proof: Let us notice thaE, = K\ G, whereK = {e}. Therefore, the considered

S.l. is transitive. On the strength of the Mackey theorem, the representdtibh)(

is equivalent to the induced representation from the subgkosgie}. The induc-

ing representation is given by the operatoe=id,. (If the subgroup is trivial,

the only representation operator is the multiplication by 1, but the representation
spaceV can ben-dimensional.) Consequently, the representation induced by

is given by the factor representation containing the regular representation in the
spacel?(G), with the multiplicity equal to dimy/). O

Corollary 4.4. The representatiofU, H), being a part of the local S.I., does
not contain discrete irreducible components.
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Proof: The regular representation of the groGp= SO(3, 1) has no discrete
series. O

Let us notice, however, that this result depends on the dimension of space.
The groupSQ(n, 1) has no discrete series foe=2k + 1, but it has the discrete
series fom = 2k.

Let us now consider the situation in the maliciously singular fiber; such a
fiber isTm, = {pt} x G, wherer(pt) =m; € M\ M. In fact, I',, can be regarded
as a well-defined groupoid (indeedt( 01) o (pt, g2) = (pt, 9201)), and we can
consider the spackP!. If F € HP! then

F(pt, g) = U(9)F(pt, €).

We see that the operator(g) acts according to the rule, but in the trivial way.
The same is true for the operator of the groupoid representation

[U(pt, g)F1(pt, @) = F(pt, 95 ") = U (g ) F(pt, 9).

Letnow G, U, En,, ) bethelocal S.1. atthe poipit. We haveCo(Em,) ~ R,
and the condition of imprimitivity

U@)r(fU(g™t) = n(f), f = const, 7 (f) =aidy

is satisfied trivially.

This means that if@, U, En,, ) is the local S.I. at the maliciously singu-
lar point pt, then the condition for S.I. does not impose any limitations on the
representation{, H). In particular, it can be an irreducible representation.0

5. EXAMPLE: TWO-DIMENSIONAL RWFL WORLD MODEL

In this section, we consider a simplified (two-dimensional) RWFL cosmo-
logical model with its two malicious singularities that often serves as a typical
example in the classical singularity problem (Bosshard, 1976; Dodson, 1978).

Let us consider the spacetime

M={( x):ne(©T) xS
where O, T) CR, carrying the metric
ds’ = R*(n)(—dn® + dx?).

This model has the initial singularitiR?(n) — 0 asy — 0, and the final singularity:
R2(n) — 0 asy — T (for the detailed presentation of this model see Dodson, 1978,
or Heller and Sasin, 2002).
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To make a contact with our previous construction, let us list all relevant
magnitudes:

M =(0,T) x St (n, x,A) € E, teR,
y=0mx, rt)erl, d(y) =, x, A),
ry) =0 x, 2+, TP ={ptht)teR)={mn x,1—tt}

To obtain the groupoid representation corresponding to a given representation
(U, H) of the groupG ~ R, we construct the Hilbert space for a chosen regular

point po= (1, x. to):
H={F:T'™— H:F(pog™", g) = U(@)F(po, &)}
={F(m x, 2o —t,t) =U()F(n, x, 20, O)}.
And for the groupoid representation operator we have

u(pO! gO)F = U(TI' X5 A0s tO)F(YL X, Ao+t —t t)
= F(77; X )\-O+t0 - tyt _tO) = U(_tO)F(n! Xy)"O _t! t)

To obtain the corresponding S.G(U, E,, ), P), for G =R, we make use
of the generalized Stone, Neimark, Ambrose, Godement theorem (see Barut and
Raczka, 1977, p. 160), which says that a representatigrH() of the groupR in
any Hilbert space can be expressed with the help of a spectral md2sur¢he
following way:

U(t):/e”sdP(s).
R
We have

Fe(Em H) ={¢ Em — H:¥(n, x, 2o+ 1) = U®)¥(n, x, 2o)}.

In this Hilbert space the spectral measure is

whereB C R is a Borel set, ang g its characteristic function.

It can be easily seen that the systé&&n (U, E,, P) indeed satisfies conditions
of S.I. Therefore, the results obtained in the previous sections remain valid. For
regular points, the representatidh, (H) is equivalent to the regular representation
ofthe grougR in L?(R), possibly with the multiplicity greater than 1. For malicious
singularities, every representatidd,(H) of the groupR satisfied the conditions
of S.I. The regular representation Rfin L?(R) has, exactly as fo8 Q(3, 1), no
discrete components.
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6. INTERPRETATION AND COMMENTS

So far our results were purely formal; let us now try to read from them a
physical meaning. In physical applications systems of imprimitivity appear in the
following circumstances.

Let us consider a quantum physical system having the symmetry dtoup
It is described by a paitJ(P), H), whereU (P) is a unitary representation of
the groupP in a Hilbert spaceH. Let us further assume that a classical system
is described by the paif, M), whereM is the space of a classical observable
that characterizes the state of this system (e.g. the space of positions or space of
momenta), and is acting onM as its symmetry group. If itd there is a state
¥y in which the value of an observablexs M, we say that the quantum stalg
corresponds to the classical magnitudé.et us denote

Hy = {¢, € H:a=x].

If such correspondence exists, i.e., if the quantum system has an interpretation in
terms of classical observables, the following conditions hold:

() He=Uyem Hx,
(i) U(p)Hx C Hpy,

and there exists the system of imprimitivity for the representati¢p) of the
symmetry groupP (Mensky, 1976). The above is visualized in the following
diagram, the left column of which represents quantum description and its right
column the corresponding classical description.

Hxswz' reM
peP peP
U(p)e preM

If P acts onM transitively, i.e., if there is a subgroul c P such that
M = K\ P, then, on the strength of the Mackey theorem, any imprimitive repre-
sentation of the group is induced from the subgroug (Mackey, 1978, 1998).

Let us now apply this analysis to the case of spacetime with malicious sin-
gularities. The groupoid representation is given by the gdir{H,},ce). Al-
though in the present work we consider classical singularities, we can say that
the above pair provides a quantum description of the singularity (or something
analogous to quantum description since it uses typically quantum mathematical
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tools). We also have its classical description given by the action of the group
G=S0(3,1) onE, E x G— E (Lorentz rotations of local frames). Since the
groupoid representatidd corresponds bijectively to the system of imprimitivity
(G, U, E, m), we could say that the quantum description of our model corresponds
to its classical description. This some-how justifies the fact that although we are
facing the classical singularity problem, it can be dealt with in terms of mathe-
matical structures typical for quantum theory (unitary operators, Hilbert spaces,
etc.).

In our case, the Mackey theorem says that the unitary representation of the
Lorentz groupG = SO(3, 1), which is the part of the corresponding S.1., is in-
duced from its subgrould such thate, = K\G. If me M is a regular point then
K ={e}; if me M\ M is amalicious singularity thelk = G. This means thatin our
model the correspondence between quantum description and classical description
is complete if we do not take into account malicious singularities. At maliciously
singular points this correspondence formally also takes place, but the S.1. condition
is always trivially satisfied.

There can exist “intermediate” singularities for which the isotropy gi¢ug
aproper subgroup @; they are not regular points of spacetime, but as singularities
are weaker than malicious ones (e.qg., see Ellis and Schmidt, 197 ®. Lis the
isotropy group of a poinp € E. We haveK, =Kq if there isge G such that
g=pg, andEn = K,\G. SinceEy, for an “intermediate” singularity an, is a
quotient space, the Mackey theorem applies, and consequently the represenation,
that is a part of the S.I. with the bakg,, is an induced representation by a certain
representation of the subgroip

Let us notice that im is a regular point of spacetime, dify, =dimG; if m
is an “intermediate” singularity, dirg, = dim G — dim K; if mis a malicious sin-
gularity, dimEg,, = 0. In this sense&K may be regarded as measuring the “strength”
of a given singularity.

At regular points the group representation, which is an element of S.1., does
not have discrete components [the groB@(3, 1) has no discrete series]. In
the quantum field theory this implies the impossibility to localize an elemen-
tary particle. At the malicious singularity such a group representation can be a
single irreducible representation or a direct sum of such representations. For-
mally speaking, this would mean that at the singularity elementary particles can
be localized. Since, however, this follows from the fact that the S.I. condition
does not impose any limitations on what can happen here, the correct interpre-
tation seems to be that general relativity is essentially an incomplete theory:
malicious singularities are its “open windows” that claim for a more general
(and more complete) theory. This is not true, however, that we know nothing
about the nature of the malicious singularity; as we have shown, some of its
characteristics surrender to the analysis in terms of representations in Hilbert
spaces.
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